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THE MANIFOLD OF THE LAGRANGEAN SUBSPACES
OF A SYMPLECTIC VECTOR SPACE
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1. Introduction

Let (F*", &) be a real 2n-dimensional symplectic vector space with symplec-
tic form «, i.¢., « is a nondegenerate skew-symmetric bilinear form on E. Then
an n-dimensional subspace 1 of E will be called a Lagrangean subspace if «|,
= 0 holds. The set A(E) of all Lagrangean subspaces of (E*”, «) has a structure
of n(n + 1)-dimensional compact connected regular algebraic variety. If we put
A¥A): = {pe AE)|dim 2 N p) = k} for 2 e A(E), then A°(D) is a cell (i.e.,
diffeomorphic to R™"*V/?) for any 2 € A(E). Moreover Y, () : = (U, A*(QR)
is an algebraic subvariety of A(F), and defines an oriented cycle of codimen-
sion one, whose Poincaré dual is a generator of H'(A(E), Z) = Z and defines
the Maslov-Arnold index [1], [3], [4]. This index plays an important role in
the proof of Morse index theorem in the calculus of variations [4]. In the pre-
sent note, we shall give a differential geometric characterization of 3 (1), i.e.,
by introducing an appropriate riemannian metric on A(E) we shall show that
>3 (1) is the cut locus of some y e A(E) and A°(2) is the interior set of p. In
fact, take a basis {e;, f;} (1 < i,j < n) of E such that a(e;, e;) = a(f;, f;) =0
and a(e;, f;) = —d,;;. Then with respect to this basis (E, ) may be identified
with (R**, e}, where R* = {(p, )| p, q € R"}is 2n-dimensional euclidean space
with the canonical inner product <, >, and e ((p, @), (7', q)): = {q,p"> —
{p,q>. Weput 2,: = {(p,0)|pe R"} and y,: = {(0, g)| g ¢ R"} which are of
course Lagrangean subspaces. Then the (real representation of) unitary group
U(n) naturally acts on A(n): = A(R™) transitively, and its isotropic subgroup
at 1, is given by O(n). Thus A(n) is diffeomorphic to U(n)/O(n). Now M =
U(n)/O(n) has a structure of a compact symmetric space whose riemannian
structure comes from the Killing form of the Lie algebra of U(n). In the pre-
sent note we shall determine the cut locus and the first conjugate locus of a
point of M, from which we may prove the assertion mentioned above. For com-
pact simply connected symmetric spaces, it is known that the cut locus and the
first conjugate locus of any point coincide with each other (see [2]). Note that
(M) = Z for our manifold M = U(n)/O(n). Finally we shall determine all
closed geodesics of M and calculate their intersection number with the oriented
cycle | gsy A%(n).

Received October 6, 1975.



556 TAKASHI SAKAI

2. Preliminaries

2.1. Let & (resp. £) be the Lie algebra of U(n) (resp. O(n)). We put
Bij: = Eij - Ejl s Cz'j: = _1(Eij + Eji) , A= I/N/_z—cii ,

where E,; denotes the # X n-matrix whose r-th row and s-th column are given
by ¢;,d;,. Then & may be considered as a real Lie algebra with basis {B,;(1
<i<j<n,C,;(1<i<j<n),4,1 <i<n)}, and we have the vector
space direct sum & = IN + §, where we put M: = {4,(1 <i < n),C,;(( <P}
and $: = {B;;¢ < j)}. Now we define an inner product Q on & by @(X, ¥):
= —gtrace XY. Then {4, B,;(i <), C;;(i <j)} forms an orthonormal basis
of & with respect to Q. We shall give the Lie multiplication table.

[4;,4,1=0,

[4:, Bjil = v/ 2{3:,Cox — 0:Cij} 5

[45, Ciul = — v/ 2{8:;Bux + 6uBis} »
[Bij, Brd = — 8By + 0uBjr + 6By — 3Bk
[Bij; Coil = —8::Cy — 6:5:Cp + 6:Cii + 6;:C
[Cijs Cril = =8By — 6uBjx — 0uBu — 0:Bu »

2.1)

If we define an involutive automorphism s: U(n) — U(n) by (g _f;) —

(_g ﬁ), where (g —f;) denotes the real representation of an element

of U(n), then the fixed point set of s is O(n) and ds, ; = id;, ds, . = —idy
does hold. Since  is simple, it contains no nonzero ideal of &. Finally Q is
a ds-invariant, ad ($)-invariant positive definite bilinear form on &. We may
define a riemannian structure g on U(n)/O(n) by restricting Q to P x P and
then translating with U(n). Thus (M = U(n)/O(n), g) is a riemannian sym-
metric space with an oila (orthogonal involutive Lie algebra) (&, ds, Q). Note
that 2: = {4,(1 <i < n)} forms a Cartan subalgebra of the oila (&, ds, Q)
(i.e., maximal abelian subalgebra in ), and the center of & is generated by
c:=A, + -+ + A4,)/4/ n. Nowlet z: Un) — U(n)/O(n) be the canonical
projection and put 0 = z(e) which may be identified with 1,. As usual we shall
identify 9 and the tangent space T',M via the map dr,. We denote by z, the
left translation on U(n)/O(n) by an element g ¢ U(n).

2.2. Lemma. LetV denote the covariant differentiation of Levi-Civita con-
nection of M with respect to g, and let R(X,Y)Z: =V y y1Z — [V 5, Vy1Z be
the curvature tensor. Then the curvature tensor at o is given as follows:

R(Aia Aj)Ak = R(Ai: Aj)CkL =0 »
R(A;, Cj)A; = 2{6,;6::Cxs + 6:404,C50 — B304 + 8:40;0Ca}
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R(Aia lec)clm = ﬁ{aijailckm + 5ij5imckz + 5ik5izcjm + 5ik5imcjl
— (5;0km + 010 1m)Cir — (05500 + 0:6;0Cm} »
R(Cz’j: CkL)Am = ﬁ{_(ajkalm + 5‘7‘L5km)cim - (5ik51m + 5i15km)ij
+ (030m+0;05m)Chm + 510 m + 0 ,405m)Cim} 5
R(Cij’ Ckl)Cpq = —“(5jk5zq + 5jlakq)cip - (5jk51p + 5j15kp)ciq
— Bixdiq + 0u0:)Cyp — (Birdip + 0:0kp)C 4
+ (0ub;q + 016:)Ckp + Bifip + 670:0)Crq
+ (0:85q + 0;605)C1p + (Gixbjp + 3;20:9)C1q -

2.2)

Proof. Direct calculation by the formula R(X, Y)Z = [[X, Y], Z] for X,
Y,Z e IR, [5].

2.3. Proposition. We denote by K(g) the sectional curvature for the plane
section g. Then we have 0 < K(¢) < 4 for all .

Proof. Since M is homogeneous, we may restrict our attention to 7,M.
Let {U, ¥} be an orthonormal basis for ¢, and let 2’ be a Cartan subalgebra
containing U. Then there exists an % ¢ SO(n) such that Ad A(Y) = A'. We
may assume ¢ = {Ad (WX, Ad (W)Y}, where X = >, 4, Y = 3 f;4; +
Yiv<aTpaCrpa 2206 =1, 318 + Yip<atpe = 15 20 asfs = 0. Since Adh acts
on IN as an isometry, we get by Lemma 2.2

K(o) = QRU, MU, V) = QR(X, V)X, Y)
=23 (a, — a)’ri, 2 Max|a, — o, < 4,

»<g »<q

(2.3)

where the equality holds if and only if X = (4, — A,)/v/ 2 and Y = C,,
for some p < g.

2.4. Now we shall review the notion of cut locus and conjugate locus of
a point of a riemannian manifold. Let (M, g) be a compact riemannian mani-
fold, and let Exp denote the exponential mapping. Let X be a unit tangent
vector at x e M. Then ¢ — Exp ¢tX is a geodesic emanating from x with the
initial direction X and parametrized by the arc length. 7,X (resp. Exp #,X) is
called a tangential conjugate point (resp. conjugate point) of x along the geo-
desic t — Exp tX, if there exists a nonzero Jacobi field J(¢) along ¢ — Exp tX
such that J(0) = J(z,) = 0. Next, £,X (resp. Exp ¢,X) will be called a tangen-
tial cut point (resp. cut point) of x along z — Exp tX, if the geodesic segment
t— ExptX (0 < t <) is a minimal geodesic for any s < ¢, but ¢t — Exp X
(0 <t <) is not a minimal geodesic for any s > #,. Then it is easy to see
the following: Assume that Exp £,X is a cut point of x along a geodesic t —
Exp zX, which is not a conjugate point. Then there exists a unit vector Y ¢
T.M, Y = X, such that Exp#,X = Exp Y. (Tangential) conjugate locus
(resp. (tangential) cut locus) of x is defined as the set of (tangential) conjugate
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points (resp. (tangential) cut points) of x along all the geodesics emanating
from x. Finally the interior set Int (x) of x is defined as M\cut locus of x.
Let a(X) be a positive number such that «(X)X is the tangential cut point of
x along # — Exp tX. Then the exponential mapping Exp maps {tX; X ¢ T, M,
gX,X) =1,0 <t < a(X)} diffeomorphically onto Int (x). Thus Int (x) is a
cell for any x € M. ,

Now for our manifold M = U(n)/O(n), note that every geodesic  — Exp tX
emanating from o with the initial direction dz, X(X ¢ I, g(X, X) = 1) may
be expressed in the form 7 — exp X -0, where exp denotes the exponential
mapping from the Lie algebra & to U(n), [5]. Then we get

2.5. Proposition. Tangential conjugate locus (resp. tangential cut locus)
of o is a hypersurface of the revolution about the line generated by ¢ =
A, + --- + A,)/+/ n and may be obtained by rotating the tangential con-
jugate points (resp. tangential cut points) in W about the above line by the ac-
tion of Ad (SO(n)).

Proof. Weput€: = {C,,(1 <j<k< n)}. Since droAd hX = dr,dr(X)
for 1 e SO(n) and X e I, Ad (SO(n)) acts on IN as an isometry group and
transfers tangential conjugate (resp. cut) points into tangential conjugate (resp.
cut) points. By (2.1) we have ad (¥ = € and consequently Ad (SO(n)U =
M. Moreover since ¢ = (4, + --- + A,)/+/ n belongs to the center of &,
Ad (SO(n)) leaves ¢ invariant and maps the orthogonal complement of ¢ in %
onto the orthogonal complement of ¢ in I.

3. Conjugate locus

In this section we shall determine the tangential conjugate locus of 0. By
Proposition 2.5, it suffices to consider the tangential conjugate locus along a
geodesic t —> Exp (3, a;4,), > o = 1.

3.1. Proposition. Let X = 3, a;A; be a unit vector in Y. Then the sym-
metric linear transformation of I which is defined by V — R(X, V)X has the
following eigenvalues: O with the eigenspace W and 2(a; — a;)* with eigen-
vector C;,(1 < j <k < n). The first tangential conjugate point of o along a
geodesic t — Bxp t(}; a;A,) is given by (Min;_, /(W2 la; — @) 204 ey

Proof. The first assertion is clear, because by Lemma 2.2 we have

(3.1) RX,ADX =0, R(X,C,)X = 2c; — ap)’C,; .

Next take an orthonormal basis {4;, C;,} of T,M = IN. By parallel translat-
ing {4;,C;} along t — Exp tX, we have an orthonormal frame field {4,(?),
C;(9)} along the above geodesic. Let J(2): = 3, a(DA() + 3,24 b1(DC (D)
be a Jacobi field with J(0) = 0. Then since M is a symmetric space, the Jacobi
equation Ve,V ,J () + R(E(2), J())é(2) = 0, where we put ¢(r) = Exp ¢X, takes
the form
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(@/dt)a,(t) =0, (d*[de)b;(8) + 2(a; — a)’bju(®) = 0,
with a,(0) = 5;,(0) = 0. So we have
J@O) =1 3 a,A,(5) + X by(sin V2 fa; — ) DC, (D)

for some constants a,, b;,. Then J(¢,) = 0 holds for some #, > 0 if and only
ifa;=0@G=1,---,n) and sin v/ 2 |a; — ;| ¢, = O for some j < .

3.2. Remark. Let the multiplicity of the first tangential conjugate point
t,X along t — ExptX be equal to a, i.e., |a;, — ay,| = - = |a;, — a3, | =
Max;_, |e; — a;|. Then by variational completeness, {Exp f, Ad (h)X |h, =
expsY; Y € (B, -5 Bj,} C 9} reduces to a point Exp 7,X.

4. Cut locus

First we shall give the following lemma.

4.1, Lemma. Let t,X be the tangential cut point of o along a geodesic t —
ExptX, where X = Y, ¢;A; €U, 3 o} = 1. Then either t,X is a tangential
conjugate point of o along t — EXp tX or there exists a unit Y = }, ;A; € ¥,
Y # X, such that Exp t,X = Exp1,Y.

Proof. Suppose that #,X is not a conjugate point. Then there exists a unit
vector Z € I such that Exp t,X = Exp #,Z and Z # X. We shall show [X, Z]
= 0. In fact, suppose [X, Z] == 0. We may assume Z ¢ 2. Since M is a sym-
metri¢ space, Exp#,X = mexp X holds and we have exp t,X = exp (t,2)h
for some /& € O(n). Then exp (—#,X) exp (sZ) exp (t,X) = Adh~'exp (sZ), and
consequently Ad (exp (—#,X))Z = Ad h'Z holds. But Ad (exp (—#,X))C;;
= C,; cos a;;, + By, sinay, with a;, = 4/ 2(a; — ap)t,. So if we put Z =
>3 z2:Ad; + 2 <k 256C e, then we have

[X,Z] = —v2 ;kzjk(aj - a’k)Bjk >
J
Adexp (—1,X)Z = 3} 2;4; + 25 2;x(Bjg sinay, + Cjy o8 ayy)
2 J<k
=AdA N3 2.4, + 3 2,:C) e .
k3 i<k
Since [X, Z] # 0, and Z ¢ ¥, we get for some j < £, sin a;, = 0 with «; —
a, # 0, i.e., ¥ 2(a; — a;) = =m, where m is a nonzero integer. Thus by
the proof of Proposition 3.1, 7,X is a tangential conjugate point of ¢ which
is a contradiction. So we have [X,Z] = 0. Let % be a Cartan subalgebra

which contains X, Z. Then there exists an element k ¢ SO(n) such that X =
Ad (k)X and Z = Ad (k)Y for some Y, Y #* X. Then we have

7, Bxp t,X = Exp t, Ad (k)X = Exp X = Exp #,Z
=Expt, Ad(k)Y = ¢, Expt,Y ,
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and consequently we get Exp #t,X = Exp Y for some Y e ¥, ¥ # X.
g.e.d.
Now we shall determine the tangential cut locus of 0. By Proposition 2.5,
it suffices to consider the tangential cut point 7, X of o along a geodesic ¢t —
ExptX, where X = 3 a4, ¢, > of = 1. Then by Lemma 4.1, ¢,X is a
conjugate point of o or there exists a umit vector Y (#X) in ¥ such that
Exp t,X = Expt,Y. Generally, by a direct calculation, Exp X = ExptY
holds for some unit vector Y = 3 8,4, if and only if

(*) v 2 (e, — Bt = myx form; e Z

holds. So first, for a given X we shall search for the minimum positive number
Z, such that (*) holds for some unit ¥ ¢ %, ¥ # X.
4.2, Lemma. 7, = Min,_,_, 7/(2+ 2 |a;)).

Proof. We shall use the vector notation ; @ = (ay, - - -, ), B= (8, - - -, Bn),
m= (my, ---,m,) e Z* — {0}. Then (*) is equivalent to
2
(4.1) t=—Fml =1,
242 [Ka, m)|
(4.2) —g_ Kem
|mf[*

So, if we determine m, # O such that the value of ¢ defined by (4.1) takes
the minimum positive value, then 8 is automatically determined by (4.2). Now
we put «: = Max,,., |a;| = Max,,,_, [{e, m>|/|m]. Then we get

[Ka,my| _ lal[my] + -+ lagllmd Il + o ] _
mf S mia e am  omit o

So Max,,cz»_ (g [{@, m>|/|m[ = a, and the equality holds only in the following
case: Let a = |ay,| = -+ - =|a;,|, then m; = ¢ sgna,, -, M, = ¢, SgN @y,
(e, - - +,5, = 0 or 1) and other m,’s are equal to zoro. Thus we have , =
Min,c go_i @ |mP/ (2 2 |@, m|) = z/(2+/ 2 a) with @ = Max,,_, ;|-

4.3. Remark. If ¢ = |a;| = --- =|ay), then B which is determined by
(4.2) with above m,’s are given by 8 = (ay, - - -, izh, cee, i_z&ij’ <o, i‘;w

-+, a,). So there exist 2* — 1 Y = 3, 8;4,(#X) such that Exp{, X = Exp?,Y
holds.

Now the tangential cut point ¢,X of o along # — Exp ¢X is given by

t,: = Min {t > 0|tX is the first tangential conjugate point of o along
t — Exp tX or there exists a unit Z ¢ I (Z # X) such that
Exp tX = Exp tZ}
= Min {t > 0|¢X is the first tangential conjugate point of ¢ along
t — Exp tX or there exists a unit ¥ ¢ ¥ (¥ # X) such that
Exp tX = Exp tY}.
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Since X is the first tangential conjugate point of ¢ along ¢t — Exp ¢X if and
only if # = Min,, #/(+/ 2 |&; — a;)) and obviously Min, ., z/(+ 2 |a; — a,|)
> Min z/(2+4/ 2 |a;]) holds, the tangential cut point #,X of o along ¢ — Exp tX
X = 3 a,A,) is given by £, (=f,) = Min; z/(2+/ 2 |a;[). Note that the cut
point #,X is the first conjugate point if and only if Max, , [a; — ;| = 2 Max | «;],
i.e., there existsome j < ksuch that |¢;| = |a;| = @ and «; + , = O hold.
Thus we get

4.4, Proposition. The tangential cut point t,X of o along a geodesic
t — ExptX, where X =) a;A, and gX,X) =1, is given by t,=
Minyg;c, 7/ 2v 2 |a;)-

4.5, Theorem. For X = 3, a;A;, where Y, & =1, we put a(X): =
Max,,_, la;| and 1 (X): = Min .., z/2vV 2 |a,)) = 7/« 2 a(X)). Then
A¥(n): = {2 e AR*™)|dim (2 N g,) = k} is given by {Exp Ad (SO(n)t,(X)X | X
= Y a A, X o =1, with aX) =|a,| = -+ =|a,[}. In particular, we
have {_J2_, A¥(n) = Cut locus of o, A'(n) = Interior set of o.

Proof. First we shall show that for a unit vector X ¢ 2 with a(X) = |q,,|
= .-+ = |ayl), dim ((Bxp £,(X)X) N g) is equal to k. In fact, we may assume
aX) =|a| = -+ = |ag] > @] = -+ > |a,|. Then we have

Exp ,(X)X = exp t,(X)X -4,
%, cos v 2 ayty(X)
=p,9|p = : ,
X, €os v/ 2 a1, (X)
x, sin v/ 2 a,1,(X)
q= : (X, -, X,) € R
X, 8in v 2 a,t,(X)
) 0 X
0
AP DIP =L cos (aurm/20(X) | 7

X, COS (a,;n- [20(X))
+x,

+x,

. o ;(xls"'>xn)ERn
X+l sim (ak+lﬂ/2a(X))

X, sin (an‘ﬂ [2a(X))
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From this our assertion is obvious. Since z, (& e SO(n)) leaves 1 invariant,
we get

{Exp Ad SOLX X = 3 aid; ( Y= 1)
with a(X) = |a | = - - - = Iaikl} c A¥n) .
Similary it is easy to show that
Int (0) = {Exp Ad (SO(m))X |0 < t < t,(X), X e ¥, (X, X) = 1} < A(n).
But by Propositions 1.4 and 4.4,

M = ka 4 > L) (Exp Ad (SOm)(X)X)

U {Exp Ad (SOm)tX [0 < t < t,(X)})
= Cut locus of 0 U Int (0) =

Thus the proof is completed.

4.5. Corollary. Diameter of M = /nr/(2v 2). Injectivity radius of M
= 7/(24/ 2) = (Diameter of M)/+/'rank M.

Proof. Diameter of M = Maxy,: aMin_, 7/ RV 2 o) = v /(2 2).

Injectivity radius of M = Ming,s_, Min,_,., 7/ 2V 2 |ey]) = n/(2v 2).
g.e.d.

5. Closed geodesics

5.1. Theorem. For m: = (m,, ---,m,) e Z" — {0}, we put X(m): =
2i(m;/lm)A,; e U. Then each of the following holds :

(i) c@®:t—>ExptX(m), 0 <t <|mir/v 2, is aclosed geodesic of length
|m|r/ v/ 2" with the initial point o. Its multiplicity is equal to the greatest com-
mon divisor of m,, - - -, m,.

(ii) Every closed geodesic of M with the initial point o may be expressed
in the formt —Exp t Ad (W)X (m), where h ¢ SO(n) and X(m) = 3 ; (m;/{m)A,,
me Z* — {0}

(ili)) The intersection number of a clesed geodesic t — Exp t Ad (W)X (m),
0Lt im|=/ V2, with the oriented codimension one cycle \_Jr_, A¥(n) is
given by 3 m;.

Proof. 1°. c(®):t—Exp#}, a;A,), where >, i =l and 0 <t < ¢, is
a geodesic loop & exp (3] a;A4,) ¢ O(n)

& ((cos v/ 2ait, + vV —1siny 2a;)8,) e O) & vV 2a;t, =my, mye Z
(z}t1 =mm; /(W 2 ) =x\m|/V 2,

o; = m;/|m| with m = (m,, ---,m,) e Z" — {0} .
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Next, since exp (z |m|X(m)/+/ 2) = ((cos mx)3;;) € O(n), we get

i(r |m]/«/—2) = ATexptrimixmyvHdn( 2 a:A;)
= dr(Ad ((cos m;m)3; (Y a;A;)

that is, c(r), 0 < t < = |m|/+/ 2 is a closed geodesic.

2°. Let k be the greatest common divisor of m,, ---,m,; i.e., m = kp,
p:=(p,--,p)eZ* — {0} and p,, - - -, p, are relatively prime. Then we
get by 1°, c(z|pl/v 2) = ¢(0), é(z|p|/+ 2) = ¢&0), and consequently c(2),
0<t<x|m|/v2, is a closed geodesic of multiplicity k. Conversely let
c®):t—ExptX(m), 0 <t <t, = nlm\/ﬁ, meZ" — {0}, be a closed
geodesic of multiplicity k. Then from c(z,/k) = ¢(0), é(t,/k) = ¢(0), we get
rim|/(v 2k) = z|p|/v 2, p;/Ip| = m;/|m)] for some p ¢ Z" — {0} with re-
latively prime p,, - - -, p,. That is m = kp and the greatest common divisor
of m,, - --,m, is equal to k. Thus we have shown (i). (ii) is obvious from 1°
and the fact that It = Ad (SC(n)¥.

3°. Letc(®:t—ExptAd (WX(m), 0 <t < m|m|/v 2, be a closed geo-
desic. To show (iii), it suffices to consider the case & = e. Then the intersec-
tion number of c(f) with the oriented cycle |_J?_, 4%(n) is given by

e nuori0; SEN oy n1C(D) 5

where g, ,,,¢(?) is the following symmetric form on a subspace c(£) N g, of c(9) :
Let g,,¢(¢) be the symmetric bilinear form on ¢(¢) defined by

© x; €08 v/ 2 a;t\ [v;cos v 2 at
¢ ) )
Tecty x.8in v/ 2 a;t) \y,sin v/ 2 et

= (ﬁ/imD 2, mx.y,; sin? (ﬁmit/[mD s (;: = m/lm]) .

Then qgy0,,6(0) is defined as the restriction of g..,é(f) to the subspace
c(®) N p, of c(®), [4]. Now c(f) N g, # {0} if and only if cos v 2t = 0for at
least one @;. Now put T: = {(m,;,r)|1 <i < n,1 < r <|ml,r integer} and
consider the following equivalence relation “~” on T': (m;, 1) ~ (my, s) &
b, = 7 |m)/ (V2 |my)3Qr — 1) = 1,,(: = = |m|/ (v Z|my])-3@s — D).
We denote by [(m;, r)] the equivalence class of (m;, r) with respect to *“~"".
Then c(f) N p, # {0} holds if and only if ¢ = ¢, , sor some (m,, r) ¢ T, and c(;,,)
N p=1{0,9)q="*40, -, x;, -+, £X;, -+ +,0), where i, - - -, i; are de-
termined by [(m;, )] = {(m,,, 1), - - -, (my,, 1)} Thus we have g,.; .y, ¢,
= (~/7/\m|) 25 m;X;.¥i, SO that Sgn g, 0.,C,) = E_isgnmg, and
consequently the intersection number is equal t0 3 n,mjer/m 2o 5= SED My, =

= (sgnmy) |m;| = X7, m,, because of #T = Y 7, |m,|.

5.2. Corollary. Two closed geodesics t — ExptAd (WX(m), 0 <t <
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|m|z/v 2 and t > Expt Ad ()X (n), 0 < t < |n|x/+ 2, where h, k € SO(n),
are homotopically equivalent if and only if > 7, m;, = 3,7, n,.
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